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Introduction:

A program of research was carried out in which theoretical investigations into the simultaneous
manipulation of carriers (electrons, holes, and ultimately excitons) and light in semiconductor
nanostructures such as quantum wells were conducted. The manipulation of the carrier and
optical dynamics will be achieved by the use of specially tailored ultrafast optical pulses,
multicolor laser fields, millimeter or submillimeter electromagnetic pulses, or combinations of
the above. Because the relevant timescale for the carrier dynamics may be less than the
characteristic dephasing time of the carriers, the evolution of the system can be coherent; phase
effects play a dominant role. Such shaped pulses and multicolor fields may be used to
coherently control optical excitations in semiconductors in order to access quantum mechanical
states, which are otherwise difficult to attain.

The project fell under the ONR Young Investigator Program (YIP) and the Presidential Early
Career Award for Scientists and Engineers (PECASE).

Work for this project began at Washington State University under the title “Coherent Control
of Carriers and Light in Semiconductor Nanostructures,” and was subsequently transferred to
Georgia Tech as “Optical/Far-Infrared Control of Low-Dimensional Semiconductor
Structures.”

Research Highlights:

1. Low Carrier Densities in Intrinsic Semiconductor Heterostructures: Strong-Field Terahertz
Physics of Excitons in Low-Dimensional Semiconductor Structures: We studied theoretically

the transient response in the THz and optical domains of an intrinsic semiconductor quantum
well (QW) weakly excited by an ultrafast optical pulse whose spectral bandwidth spans
excitonic levels as well as free e-h pairs in the presence of a strong THz field. Our studies
began with the field polarized in the QW plane, in which case the THz field coupled different
states of the internal exciton motion [Citrin(c),(f),Hughes(a)]. These dynamically hybridized
states are then interrogated by a weak optical (near-infrared) field. The initial focus of our work
was the coherent control of the emitted THz transients [Hughes(e),(f)]. THz harmonic
generation was predicted there—similar to high-field harmonic generation (HFHG) in atoms
[Corkum,Kulander]. We also studied the optical properties, such as the appearance of THz
sidebands on optical spectra [Kono]. These are optical signals at frequencies w + n2 where ®
is the incident optical frequency, Q2 is the THz frequency, and n is an integer. We have
investigated the THz fields at which perturbation theory breaks down: the kV/cm range at ~1
THz in good agreement with experiment [Sherwin]. Also considered was an in-plane circularly
polarized THz field; we have found that the sidebands are strongly suppressed for the circularly
polarized case, in excellent agreement with experiment [Kono].

It was found in Prof. Mark Sherwin’s group at UCSB, however, that more efficient THz-
sideband generation takes place if the THz field is polarized in the QW growth direction. Our
estimates for the maximum frequency conversion to the first THz sideband normalized to the
peak reflection at the fundamental (optical) frequency is a few % in a single QW [Maslov(a)-
(c).(e)-(h)]. Such conversion efficiencies thus make THz-sideband generation in QW'’s
potentially attractive for optical wavelength conversion or to shift an optical data stream in a
WDM system from one wavelength to another. This work proceeded in collaboration with
Prof. Mark Sherwin at UCSB, and continues.

© understand basic issues involved in THz-sideband generation, we have developed and
implemented simple theoretical models. Full-scale calculations of the optical properties of
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QW’s in THz fields including the detailed e-h Coulomb interaction are computationally
expensive, and, moreover, can obscure the important physical effects in oceans of numbers.
Instead, analytical approaches are useful to explore parameter space as well as to identify effects
observed in more detailed simulations [Citrin(n)]. The treatment is equivalent to the standard
approach to single-particle quantum transport through a time-modulated potential
[Citrin(l),Glazman,Rubo,vanHouten]. The result is the analogy between the single-particle
transport and optical phenomena [Citrin(k),(m)].

Initial numerical results for a single QW show that the first sideband is in the range of 1 % the
peak height of the fundamental; this is in excellent agreement with detailed computations we
have carried out. [Subsequent work (as discussed above) established theoretical maximum
conversion efficiencies in the few % range.] For the time-domain problem—using ultrafast
optical pulses to photogenerate excitons—we have shown how a quasi-half-cycle THz pulse can
be used to manipulate the optical phase of the excitons, and thus how to carry out in principle
two-pulse coherent control of excitons in a QW [Citrin(a),(b),(d),Heberle,Luo].

The treatment has been generalized [Citrin(l)] to account for confinement of the optical field in
a planar semiconductor MC [Weisbuch], where a bare-cavity optical mode is degenerate with an
excitonic resonance. The resulting two coupled modes of the MC are of hybrid exciton—-cavity-
photon character; mode splittings of ~1-10 meV are typical. We have shown that THz-sideband
- generation can be strongly enhanced by two orders of magnitude in a MC [Citrin(l)]. We have
also considered the corresponding problem in the time domain [Norris], where an ultrafast
optical pulse excites the MC which is followed by an ultrafast THz pulse. We have shown how
such a THz pulse can be used to control the phase of the oscillations between the two modes
excited simultaneously by the ultrafast optical pulse.

Another model explored is a pair of excitonic resonances dressed and resonantly coupled to
each other by the THz field [Citrin(i)]. The coupling results in the spectral features associated
with single unmodulated resonances becoming doublets as the modulating field is applied
[Autler-Townes (AT) splitting]. At sufficiently high THz fields, a hole at the center of the
doublet forms leading to electromagnetically induced transparency (EIT). So far as we know,
we are the first to study the AT splitting and EIT in the THz sidebands [Citrin(i)].

Using many of the techniques we developed for the foregoing topics, we also considered the
optical propeoreties of QW’s in strong magnetic fields or strong crossed magnetic and THz
electric fields in the nonperturbative regime [Citrin(h),Hughes(i)]. The theory well reproduces
detailed theoretical spectra in limits where they can be obtained, such as for the in-plane dc
[Franz,Keldysh] and dynamic Franz-Keldysh effects [Nordstrom(a),(b)] (the modification of
the bandedge optical properties in a dc or THz electric field) and magnetoexcitons [Glutsch].

We conducted work on the optical properties of quantum wires (QWR’s) in strong dc electric
fields aligned with the structure axis [Hughes(d)] using a real-space approach. We found that
the Franz-Keldysh effect including excitonic effects in QWR’s can be quite dramatic
[Hughes(d)].

II. High Carrier Densities in Semiconductor Optical Amplfiers: Strong-Field Terahertz Effects
on _the Optical Properties: We studied the transient dynamical response of semiconductor

optical amplifiers (SOA’s) to half-cycle [Hughes(b),(c)]and narrow-band [NingTHz pulses.
We have found a substantial THz-induced heating effect of the e-h plasma in the SOA with
cooling via LO-phonon emission to the lattice temperature within ~5 ps. The heating-induced
modification of the gain spectrum and frequency-dependent refractive index are predicted to
lead to substantial modification of the propagation of an optical pulse through the SOA over
lengths of ~300 um for achievable THz pulses, thus suggesting interest for possible
applications ultrahigh-speed optical switching. Initial experiments carried out by Prof. James




Heyman of MacCalester College, MN conducted at the UCSB were inconclusive, and follow-up
experiemtns are planned.

I1. Coherent Control of Excitons in Quantum Structures: Coherent control is the use of
multicolor electromagnetic fields, or shaped optical pulses, to achieve quantum states that may
be otherwise difficult to attain. One application of these ideas in semiconductors is to use
phase-locked pairs of optical pulses, first to excite and then to deexcite excitons. If the two
pulses are chosen with a time delay such that their phase difference is an odd multiple of , the
two pulses excite interband polarizations that are 7t out of phase, and thus cancel. This method
has been applied to QW’s on the ps timescale [Brener,Heberle,Luo,Planken], which is much
shorter than the exciton radiative lifetime. We have recently proposed an ultrahigh-speed
semiconductor-MC-based switch based on this principle to circumvent the difficulties
associated with slow device recovery (saturation) [Citrin(a),(b),(d)]. Thus the recovery time as
well as the switching time is expected to be consistent with 100-Gb/s applications. Together
with our experimental collaborators, we have recently demonstrated the physical principle for
such a switch [Lee]. We have treated the linear and nonlinear interactions of the optical pulse
with the QW’s [Lee]. In particular, we have studied theoretically the optical nonlinearity
viewed at one coupled mode of the microcavity after pumping at the other mode using a phase-
locked pulse pair. Substantial modulation of the probe reflectivity was found in agreement with
experiments carried out in collaboration with Prof. Ted Norris at the University of Michigan.
These calculations are based on the time-space domain solution of Maxwell’s equations in the
presence of the nonlinear medium employing the finite-difference time-domain method
[Sullivan(a),Taflove].  The material equations are the optical Bloch equations with
phenomenological nonlinearities.

IV. Electronic Wavepackets in Superlattices: The dynamics of electronic wavepackets in SL’s
driven by strong time-dependent THz fields was investigated. Some of the phenomena of
interest were Bloch oscillations [Bloch], collapse of the miniband [Holthaus], and Zener
tunneling [Zener]. In particular, we considered the generation of multiple harmonics by
electrons in a superlattice in a Kronig-Penney model numerically by means of FDTD, and
analytically by semiclassical transport theory [Feise(a)]. We found the cutoff order of the
emitted THz harmonics is simply the ratio of the potential energy drop at THz field maximum
per supercell of the superlattice to the energy per THz photon—quite distinct in nature from
HFHG in atoms. This cutoff is simply determined by the maximum kinetic energy an electron
in a miniband can acquire from the THz field before it undergoes Bragg scattering (Bloch
oscillation).

V. Carrier Dynamics in Photoconductors: Our interest is in the interplay of the carrier
dynamics, electrode and excitation geometry, and screening in fast photoconductors excited by
ultrafast optical pulses to optimize THz output from such devices. We have carried out work
with our experimental collaborator Prof. Martin Koch of the Technical University of
Braunschweig, Germany to study the spatio-dynamics of optically excited carriers in
photoconductors. Semi-quantitative agreement has been achieved. We have found that the
space charges persist under 80 MHz repetition-rate operation, which is standard for photocon-
ductors pumped by Ti:Sapphire oscillator systems [Bieler,Feise(b)]. Currently, a graduate
student is continuing work on this topic.

VI. Miscellaneous: We have carried out a number of studies related to the foregoing but not
falling neatly into any of the categories. One is excitonic Rabi flopping in QW’s [Geissen,
Schultzgen], in which a strong optical pulse coherently drives the exciton population first up
and then back down. We have studied carrier dynamics upon the application of strong sub-ps
optical pulses using the SBE in the HF approximation with non-diagonal scattering. In good
agreement with experiment, we find deep modulation of the carrier population. We have
proposed carrying Rabi-flopping experiments in a dc biased QW to produce strong, tunable
THz emission which follows the Rabi flops [Hughes(j),(m)]. We have also studied quasi-
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adiabatic population transfer using strongly chirped or frequency-modulated optical pulses
incident on QW’s. We have found conditions under which the carrier populations are
transiently pinned at a roughly fixed value while the pulse is incident, as opposed to inducing
Rabi flops [Hughes(l)]. Also partially funded by this grant was work on Rabi flopping in two-
level systems induced by few-cycle optical pulses where it was found that for sufficiently strong
pulses the area theorem breaks down [Hughes(k)].

Other work under the ONR program includes electron-phonon interactions in QD’s
[Goupalov] in a collaboration with Profs. Hailin Wang at the University of Oregon, Robert
Suris at the Joffe Institute, St. Petersburg, Russia, and P. Lavallard at CNRS, France. We have
also performed model calculations for THz-modulated QWs [Citrin(r)], of THz nonlinearities
[Citrin(t)], electron-hole spatial correlation in microcavities [Citrin(s)], and on a formalism that
might show promise for semiconductor nonlinear-optics problems [Setlur].

Another area which have attracted our interest are the electromagnetics of time-varying plasmas
in semiconductors for electromagnetic frequency conversion [Bakunov(a)-(c )] and fundamental
issues concerning the relaxation of carrier distributions that are anisotropic in k-space, such as
are generated by THz pulses [Hughes(n)].

We have also worked on nonlinear dynamics of electrons in QW’s in THz fields [Batista(a),
(b),Citrin(q)], nonlinear optics of plasmas in solids [Bakunov(d)], THz pulse shaping
[Nekkanti], and quantum dynamics in QD’s [Sullivan(b),(c)].

Personnel:

Funding from this program supported at various times two Ph.D. students (Alexey Maslov,
PhD 2001, subsequently post-doc in PI’s group at Georgia Tech, now post-doc at NASA
Ames, Moffett Field, CA; Michael Feise, PhD 2001, subsequently post-doc at Washington
State University, now post-doc at Australia National University) and partially supported four
post-doctoral research fellows (Stephen Hughes, subsequently lecturer at University of Surrey,
then research staff at Galian Photonics, Vancouver, BC, now member research staff, NTT
Research Laboratories, Tokyo; Alex Maslov, see above; Adriano Batista, now competing for
faculty position in Brazil; Girish Setlur, post-doc at Indiian Institute of Science, Bangalore,
India; Sergei Goupalov, now post-doc at Los Alamos National Laboratory). The program also
provided partial summer support for the PL
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